If y2 = ax2 + bx + c, where a, b, c are constants, then y3d2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

23ex is equal to

  • 3ex

  • 3(h - 1)ex

  • 3(eh - 1)2ex

  • None of the above


192.

The value of 2Ex2 at the interval h = 1 is

  • 0

  • 1

  • 2

  • 4


193.

The value of f at x = 0 so that function fx = 2x - 2- xx0, x  0 is continuous at x = 0, is

  • 0

  • log(2)

  • 4

  • log(4)


194.

If y = ax . b2x - 1, then d2ydx2 is

  • y2logab2

  • y . logab22

  • y2

  • y . loga2b2


Advertisement
195.

If f(x) = sin-12x1 + x2, then f(x) is differentiable on

  • [- 1, 1]

  • R - {- 1, 1}

  • R - (- 1, 1)

  • None of these


196.

The function f (x) = e- x is

  • continuous everywhere but not differentiable at x = 0

  • continuous and differentiable everywhere

  • not continuous at x = 0

  • None of the above


Advertisement

197.

If y2 = ax2 + bx + c, where a, b, c are constants, then y3d2ydx2 is equal to

  • a constant

  • a function of x

  • a function of y

  • a function of x and y both


A.

a constant

Given, y2 = ax2 + bx + cOn differentiating w.r.t. x, we get2ydydx = 2ax + bAgain differentiating w.r.t. x, we get2dydx2 +2yd2ydx2 = 2a d2ydx2 = a - dydx2 yd2ydx2 = a - 2ax + b2y2 yd2ydx2 = 4ay2 - 2ax + b24y2 4y3d2ydx2 = 4aax2 + bx + c - 4a2x2 + 4abx + b2 4y3d2ydx2 = 4ac - b2 y3d2ydx2 = 4ac - b24 = constant


Advertisement
198.

The set of points where the function fx = x - 1ex is differentiable, is

  • R

  • R - {1}

  • R - {- 1}

  • R - {0}


Advertisement
199.

If x = ϕt, y = ψt, then d2ydx2 is equal to

  • ϕ'ψ'' - ψ'ϕ''ϕ'2

  • ϕ'ψ'' - ψ'ϕ''ϕ'3

  • ϕ''ψ''

  • ψ''ϕ''


200.

If fx = xsin1x, x  0k,           x  = 0 is continuous at x = 0, then the value of k is

  • 1

  • - 1

  • 0

  • 2


Advertisement