The value of m for which the function f(x) = mx2, x&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

321.

If f(x) = kx2 if x  23    if x > 2is continuous at x = 2, then the value of k is

  • 3/4

  • 4

  • 4/3

  • 3


322.

If y = log(log(x)), then d2ydx2 is equal to

  • - 1 + logxx2logx

  • - 1 + logxxlogx2

  • 1 + logxxlogx2

  • 1 + logxx2logx


323.

If y = tan-1sinx + cosxcosx - sinx, then dydx is equal to

  • 1/2

  • 0

  • π4

  • 1


324.

The derivative of cos-12x2 - 1 w.r.t. cos-1x is

  • 1 - x2

  • 2x

  • 121 - x2

  • 2


Advertisement
325.

The value of c in mean value theorem for the function f(x) = x2 in [2, 4] is

  • 3

  • 7/2

  • 4

  • 2


326.

If the function f(x) = 1 + sinπx2, for -  < x  1ax +b,           for 1 < x <36tanπx12,      for 3  x < 6 is continuous in the interval (- , 6), then the values of a and b are respectively

  • 0, 2

  • 1, 1

  • 2, 0

  • 2, 1


Advertisement

327.

The value of m for which the function f(x) = mx2, x  1  2x, x > 1, is differentiable at x = 1, is

  • 0

  • 1

  • 2

  • does not exist


D.

does not exist

Given, fx = mx2, x  1  2x, x > 1and f(x) is differentiable at x = 1 RHD = LHD     LHD = limh0f1 - h - f1- h             = limh0m1 - h2 - m- h             = limh0m + mh2 - 2mh - m- h             = limh0- mh + 2m = 2mand RHD = limh0f1 + h - f1h               = limh021 + h - mh

For m = 0, RHD is not defined.

For m = 1, RHD is not defined.

and for m = 2, LHD = 4 and RHD = 2.

Thus, no value of m does exist.


Advertisement
328.

If y = (1 + x1/4)(1 + x1/2)(1 - x1/4), then dy/dx is equal to

  • 1

  • - 1

  • x

  • x


Advertisement
329.

If y = loglogx, then eydydx is equal to

  • 1xlogx

  • 1x

  • 1logx

  • ey


330.

For the function f(x) = x2 - 6x + 8, 2  x  4, the value of x for which f'(x) vanishes, is

  • 9/4

  • 5/2

  • 3

  • 7/2


Advertisement