x = cosθ, y = sin5θ &rA

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

411.

If xy = yx, then xx - ylogxdydx is equal to :

  • yy - xlogy

  • yy + xlogy

  • xx + ylogx

  • xy - xlogy


412.

fx = exsinx, then f6x = ?

  • e6xsin6x

  • - 8excosx

  • 8exsinx

  • 8excosx


413.

If f(x) = 1 - 2sinxπ - 4x if x  π4            a            if x = π4is continuous at π4, then a is equal to :

  • 4

  • 2

  • 1

  • 14


414.

If u = sin-1x2 + y2x + y then xux + yuy is

  • sin(u)

  • tan(u)

  • cos(u)

  • cot(u)


Advertisement
415.

If f(x, y) = cosx - 4ycosx + 4y, then fxy = x2 is equal to

  • - 1

  • 0

  • 1

  • 2


416.

y = log1 +x1 - x14 - 12tan-1x, then dydx is equal to

  • x1 - x2

  • x21 - x4

  • x1 +x4

  • x1 - x4


Advertisement

417.

x = cosθ, y = sin5θ  1 - x2d2ydx2 - xdydx is equal to

  • - 5y

  • 5y

  • 25y

  • - 25y


D.

- 25y

Given,  x = cosθ, y = sin5θ  dx = - sinθ, dy = 5cos5θ dydx = dydx = - 5cos5θ sinθ d2ydx2 = ddxdydx = ddydx . dx              =  d- 5cos5θ sinθ1- sinθ               = sinθsin5θ . 25 + 5cos5θcosθsin2θ              = - 25sin5θsin2θ - 5cos5θcosθsin3θNow,  1 - x2d2ydx2 - xdydx              = 1 - cos2θ- 25sin5θsin2θ - 5cos5θcosθsin3θ - cosθ- 5cos5θ sinθ

                                 = sin2θ- 25sin5θsin2θ - 5cos5θcosθsin3θ + 5cosθcos5θ sinθ                                 = - 25sin(5θ) - 5cos5θcosθ sinθ +5cos5θcosθ sinθ                                 = - 25sin(5θ)                                          = - 25y 


Advertisement
418.

If f : R  R is defined by fx = cos3x - cosxx2, for x  0                   λ,        for x = 0and if f is continuous at x = 0, then λ = ?

  • - 2

  • - 4

  • - 6

  • - 8


Advertisement
419.

If f(2) = 4 and f'(2) = 1, thenlimx2xf2 - 2fxx - 2 = ?

  • - 2

  • 1

  • 2

  • 3


420.

If y = sinlogex, then x2d2ydx2 + xdydx is equal to

  • y = sinlogex

  • coslogex

  • y2

  • - y


Advertisement