The value (s) of x for which the functionf(x) = 1 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

441.

If ddxx + 1x2 + 1x4 + 1x8 + 1= 15xp - 16xq + 1x - 1 - 2, then p, q = ?

  • (12, 11)

  • (15, 14)

  • (16, 14)

  • (16, 15)


442.

limx01 + x2 - 1 - x + x23x - 1 = ?

  • 1loge3

  • loge9

  • 1loge9

  • loge3


443.

If y = tan-11 +a2x2 - 1ax, then 1 + a2x2y'' +2a2y' = ?

  • - 2a2

  • a2

  • 2a2

  • 0


444.

If x2 + y2 = t +1t and x4 + y4 = t2 +1t2, then dydx = ?

  • -xy

  • -yx

  • x2y2

  • y2x2


Advertisement
445.

If x = at2 and y = 2at, then d2ydx2 at t = 12 is

  • - 2a

  • 4a

  • 8a

  • - 4a


446.

The equations x - y + 2z = 43x + y + 4z = 6x + y + z = 1 have

  • unique solution

  • infinitely many solutions

  • no solution

  • two solutions


Advertisement

447.

The value (s) of x for which the function

f(x) = 1 - x, x < 1=1 - x2 - x, 1  x  23 - x, x > 2fails to be continuous is (are)

  • 1

  • 2

  • 3

  • all real numbers


B.

2

We have,fx = 1 - x, x < 11 - x2 - x, 1  x  23 - x, x > 2 By defination of continuitylimx1-fx = limx1+fx = f1 limx1-1 - x = limx1+1- x(2 - x)= (1 - 1)(2 - 1) = 0 f(x) is continuous at x = 1Now, limx2-fx = limx2+fx  = f2limx2-1 - x2 - x = limx2+3 - x= 1 - 22 - 2 1  - 22 - 2 = 3 - 2 = 0 0  1  0  f(x) is discontinuous at x = 2Hence, fx is con tineous for all real numbers except 2


Advertisement
448.

If y = log2log2x, then dydx = ?

  • loge2xlogex

  • 1loge2xx

  • 1xlogexloge2

  • 1xlog2x2


Advertisement
449.

The angle of intersection between the curves y2 + x2 = a22 and x2 - y2 = a2 is

  • π3

  • π4

  • π6

  • π12


450.

If the function fx = k1x - π2, x  πk2cosx, x > π is twice differentiable, then the ordered pair (k1, k2) is equal to 

  • 12, - 1

  • 12, 1

  • (1, 0)

  • (1, 1)


Advertisement