Let f(x) = x, x2 for –10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to ____
Let f : R → R be defined asfx = x5sin1x + 5x2, x < 00, x = 0x5cos1x + λx2, x > 0The value of λ for which f''0 exists, is
Ans : 5
f'x = 5x4sin1x - x3cos1x + 10x, x < 00, x = 05x4cos1x + x3sin1x + 2λx, x > 0f''(x) =20x3sin1x - 5x2cos1x - 3x2cos1x - xsin1x + 10, x < 00, x = 020x3cos1x + 5x2sin1x + 3x2sin1x - xcos1x + 2λ, x > 0f''0+ = f''0-⇒ 2λ = 10⇒ λ = 5