The points (- a, - b), (a, b), (0, 0) and (a, ab), a ≠&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

Let A = x + 23x3x + 2, B = x05x + 2, Then all solutions of equation det(AB) = 0 is

  • 1, - 1, 0, 2

  • 1, 4, 0, - 2

  • 1, - 1, 4, 3

  • - 1, 4, 0, 3


22.

The value of det A, where

A = A = 1cosθ0- cosθ1cosθ- 1- cosθ1, lies

  • in the closed interval [1, 2]

  • in the closed interval [0, 1]

  • in the open interval (0, 1)

  • in the open interval (1, 2)


Advertisement

23.

The points (- a, - b), (a, b), (0, 0) and (a, ab), a  0, b  0 are always

  • collinear

  • vertices of a parallelogram

  • vertices of a rectangle

  • lie on a circle


A.

collinear

Let the four points be A(- a, - b). B(a, b), C(0, 0) and D(a, ab).

If A, 8 and C are collinear.

Then, - a- b1ab1001 = 0

 - ab - 0 + b(a - 0) + 1(0) = 0 - ab + ab = 0

Hence, A, B and C ae collinear.

Then, ab1001a2ab1 = 0

 a0 - ab - b0 - a2 + 1(0) = 0- a2b + a2b = 0

Hence, B, C and D are collinear.

So, the points A, B, C and D are always collinear.


Advertisement
24.

The number of distinct real roots of

sinxcosxcosxcosxsinxcosxcosxcosxsinx = 0 in the interval - π4 x  π4 is

  • 0

  • 2

  • 1

  • > 2


Advertisement
25.

If f : 0, π/2  R is defined asf(θ) = 1tanθ1- tanθ1tanθ- 1- tanθ1 Then, the range of f is

  • 2, 

  • (-, - 2]

  • [2, )

  • (- , 2]


26.

If a is an imaginary cube root of unity, then the value of the determinant

1 + ww2- w1 + w2w- w2w + w2w- w2 is

  • - 2w

  • - 3w2

  • - 1

  • 0


27.

Let n  2 be an integer,

A = cos2π/3sin2π/n0- sin2π/ncos2π/n0001 and I is the identity matrix of order 3. Then,

  • An = I and An - 1  I

  • Am  I for any positive integer m

  • A is not invertible 

  • Am = 0 for a positive integer m 


28.

The value of determinant

1 + a2 - b22ab- 2b2ab1 - a2 + b22a2b- 2a1 - a2 - b2 is

  • 0

  • (1 + a+ b2)

  • (1 + a2 + b2)2

  • (1 + a2 + b2)3


Advertisement
29.

Consider the system of equations x + y + z = 0, αx + βy + γz = 0 and α2x + β2y + γ2z = 0. Then, the system of equations has

  • a unique solution for all values of α, β and γ

  • infinite number of solutions, if any two of α, β, γ are equal.

  • a unique solution, if α, β and γ are distinct

  • more than one, but finite number of solutions depending on values of α, β and γ


30.

If P = 121131, Q = PPT, then the value of the determinant of Q is

  • 2

  • - 2

  • 1

  • 0


Advertisement