If a, b, c are distinct positive real numbers, then the value of

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

131.

a - b - c2a2a2bb - c - a2b2c2cc - a - b is equal to

  • 0

  • a + b + c

  • (a + b + c)2

  • (a + b + c)3


132.

The inverse of the matrix 7- 3- 3- 110- 101 is

  • 133143134

  • 131438341

  • 111334343

  • 111343334


133.

If x, y, z are all positive and are the pth, qth and rth terms of a geometric progression respectively, then the value of the determinant

logxp1logyq1logzr1 equals

  • log(xyz)

  • (p - 1)(q - 1)(r - 1)

  • pqr

  • 0


134.

If 1- 1x1x1x- 11 has no inverse, then the real value of x is

  • 2

  • 3

  • 0

  • 1


Advertisement
135.

If fx1xx + 12xxx - 1xx + 13xx - 1xx - 1x - 2x - 1xx + 1then f2012 = ?

  • 0

  • 1

  • - 500

  • 500


136.

x + 2x + 3x + 5x + 4x + 6x + 9x + 8x + 11x + 15 = ?

  • 3x2 + 4x + 5

  • x3 + 8x + 2

  • 0

  • - 2 


137.

1 + i1 - i4 + 1 - i1 - i4 = ?

  • 0

  • 1

  • 2

  • 4


138.

The value of the determinant b2 - abb - cbc - acab - a2a - bb2 - abbc - acc - aab - a2 is

  • abc

  • a + b + c

  • 0

  • ab + bc + ca


Advertisement
139.

If the lines x + 2ay + a = 0, x + 3by + b = 0, 32x + 4cy + c = 0 are concurrent, then a, b and c are in

  • arithmetic progression

  • geometric progression

  • harmonc progression

  • arithmetico-geometric progression


Advertisement

140.

If a, b, c are distinct positive real numbers, then the value of the determinant abcbcacab is

  • < 0

  • > 0

  • 0

  •  0


D.

 0

Let A = abcbcacabApply C1  C1 + C2 + C3= a + b + cbca + b + ccaa + b + cab= a + b + c1bc1ca1abApply R2  R2 - R1 and R3  R3 - R1= a + b + c1bc0c - ba - c0a - bb - c= a + b + cc - bb - c - a - ca - b= a + b + cbc - b2 - c2 + bc - a2 +ab + ac - bc= - a + b +ca2  +b2 + c2 - ab - bc - ca= - 12a +b+ca - b2 + b - c2 +c - a2Since  a, b, c are distinct positive numbers The value of determinant A is less than 0


Advertisement
Advertisement