Important Questions of Differential Equations Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
61.

The differential equation of the family of curves y = e2x(acos(x) + bsin(x)), where a and b are arbitrary constants, is given by

  • y2 - 4y1 + 5y = 0

  • 2y2 - y1 + 5y = 0

  • y2 + 4y1 - 5y = 0

  • y2 - 2y1 + 5y = 0


62.

The solution of the differential equation xdy - ydx = x2 + y2dx is

  • x + x2 + y2 = cx2

  • y - x2 + y2 = cx2

  • x - x2 + y2 = cx

  • y + x2 + y2 = cx2


63.

The differential equation of all non-vertical lines in a plane is

  • d2ydx2 = 0

  • d2xdy2 = 0

  • dydx = 0

  • dxdy = 0


64.

The differential equation of all parabolas whose axes are parallel to y-axis is

  • d3ydx3 = 0

  • d2xdy2 = 0

  • d3ydx3+ d2xdy2 = 0

  • d2ydx2 + 2dydx = 0


Advertisement
65.

Solution of Given equation is    dydx = xlogx2 + xsiny + ycosy siny + ycosydy = xlogx2 + xdxOn integrating both sides, we get  siny + ycosydy = xlogx2 + xdx - cosy + ysiny + cosy = x22logx2 is

  • ysiny = x2logx + C

  • ysiny = x2 + C

  • ysiny = x2 + logx + C

  • ysiny = xogx + C


66.

If xpyq = (x + y)p + q, then dydx is equal to

  • yx

  • pyqx

  • xy

  • qypx


67.

The solution of dydx + ytanx = secx is

  • ysecx = tanx + C

  • ytanx = secx + C

  • tanx = ytanx + C

  • xsecx = ytany + C


68.

If y = tan-1sinx + cosxcosx - sinx, then dydx is

  • 12

  • π4

  • 0

  • 1


Advertisement
69.

The differential equation dydx + y2x2 = y/x has the solution

  • x = y(log(x) + C)

  • y = x(log(y) + C)

  • x = (y + C)log(x)

  • y = (x + C)log(y)


70.

The degree of the differential equation satisfying 1 - x2 + 1 - y2 =ax - y

  • 1

  • 2

  • 3

  • None


Advertisement