Find the general solution of (x + log(y))dy + ydx = 0 from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

31.

Find the general solution of (x + log(y))dy + ydx = 0


Given equation can be rewritten as

(x + log(y))dy + ydx = 0


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

32.

The general solution of the differential equation

d2ydx2 +8dydx + 16y = 0 is

  • (A + B)e5x

  • (A + Bx)e- 4x

  • (A + Bx2)e4x

  • (A + Bx4)e4x


33.

If x2 + y2 = 4, then ydydx + x is equal to

  • 4

  • 0

  • 1

  • - 1


34.

x3dx1 + x8 is equal to

  • 4tan-1x4 + C

  • 14tan-1x3 + C

  • x +4tan-1x4 + C

  • x2 +14tan-1x4 + C


Advertisement
35.

The degree and order of the differential equation

y = xdydx2 + dxdy2 are respectively

  • 1, 1

  • 2, 1

  • 4, 1

  • 1, 4


36.

The general solution of the differential equation logedydx = x + y is

  • ex + e- y = C

  • ex + ey = C

  • ey + e- x = C

  • e- x + e- y = C


37.

If y = Ax + Bx2, then x2d2ydx2 is equal to

  • 2y

  • y2

  • y3

  • y4


38.

The solution of dydx = yx + tanyx is

  • x = csinyx

  • x = csinxy

  • y = csinyx

  • xy = csinxy


Advertisement
39.

Integrating Factor (IF) of the differential equation dydx - 3x2y1 + x3 = sin2x1 + x

  • e1 + x3

  • log1 + x3

  • 1 + x3

  • 11 + x3


40.

The differential equation of y = aebx (a and b are parameters) is

  • yy1 = y22

  • yy2 = y12

  • yy12 = y2

  • yy22 = y1


Advertisement