The order and degree of the differential equation ρ 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

The solution of the differential equation

1 + y2 + x - etan-1ydydx = 0, is

  • x - 2 = Ketan-1y

  • 2xetan-1y = e2tan-1y + K

  • xetan-1y = tan-1y +K

  • xe2tan-1y = etan-1y + K


82.

The solution of the differential equation dydx = yf'(x) - y2fx is

  • f(x) = y + C

  • f(x) = y(x + C)

  • f(x) = x + C

  • None of the above


83.

The general solution of the differential equation (1 + y2) dx + (1 + x)dy = 0 is

  • x - y = C(1 - xy)

  • x - y = C(1 + xy)

  • x + y = C(1 - xy)

  • x + y = C(1 + xy)


Advertisement

84.

The order and degree of the differential equation ρ = 1 + dydx232d2ydx2 are, respectively

  • 2, 2

  • 2, 3

  • 2, 1

  • None of these


A.

2, 2

Given, ρ = 1 + dydx232d2ydx2     ρd2ydx2 = 1 + dydx232On squaring both sides, we get  ρ2d2ydx22 = 1 + dydx23

Clearly, it is a second order differential equation of degree 2.


Advertisement
Advertisement
85.

The solution of the differential equation

dydx + 2yx1 +x2 = 11 +x22 is

  • y1 + x2 = C + tan-1x

  • y1 +x2 = C + tan-1x

  • y log1 + x2 = C + tan-1x

  • y(1 + x2) = C + sin-1x


86.

The order and degree of the differential equation 1 + 4dydx23 = 4d2ydx2 are respectively

  • 1, 23

  • 3, 2

  • 2, 3

  • 2, 23


87.

The solution of the differential equation dydx = 4x + y + 12, is

  • (4x + y + 1) = tan (2x + C)

  • (4x + y + 1)2 = 2 tan (2x + C)

  • (4x + y + 1)3 = 3 tan (2x + C)

  • (4x + y + 1) = 2 tan (2x + C)


88.

If f(x), g(x) and h(x) are three polynomials of degree 2 and x = fxgxhxf'xg'xh'xf''xg''xh''x, then x is a polynomials of degree

  • 2

  • 3

  • 0

  • atmost 3


Advertisement
89.

The degree of the differential equation of all curves having normal of constant length c is

  • 1

  • 3

  • 4

  • None of these


90.

ddxatan-1x + blogx - 1x + 1 = 1x4 - 1  a - 2b is equal to

  • 1

  • - 1

  • 0

  • 2


Advertisement