If c1, c2, c3, c4, c5 and c6 are constants, then the order of the differential equation whose general solution is given by y = c1 cos(x + c2) + c3 sin(x + c4) + c5ex + c6, is
6
5
4
3
y = 2e2x - e- x is solution of the differential equation
y2 + y1 + 2y = 0
y2 - y1 + 2y = 0
y2 + y1 = 0
y2 - y1 - 2y = 0
The differential equation representing the family of curves y = 2c (x + c3), where c is a positive parameter, is of
order 1, degree 1
order 1, degree 2
order 1, degree 3
order 1, degree 4
The order and degree of the differential equation
(2, 4)
(2, 3)
(6, 4)
(6, 9)
A.
(2, 4)
Given differential equation can be rewritten as
Here, we see that order of highest derivative is 2 and degree is 4.