If sinx  is the integrating factor (IF) of the linear d

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

The degree and order of the differential equation 1 + dydx373 = 7d2ydx2 respectively are

  • 3 and 7

  • 3 and 2

  • 7 and 3

  • 2 and 3


202.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


Advertisement

203.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


D.

cotx

We know that, IF of dydx + Py = Q is      IF = ePdxsinx = ePdxOn differentiating both sides, we getcosx = ePdxPcosx = sinxP   P = cotx


Advertisement
204.

The solution of the differential equation

dydx = tanyx + yx is

  • cosyx = cx

  • sinyx = cx

  • cosyx = cy

  • sinyx = cy


Advertisement
205.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


206.

The particular solution of the differential equation xdy + 2ydx = 0, when x = 2, y = 1 is

  • xy = 4

  • x2y = 4

  • xy2 = 4

  • x2y2 = 4


207.

The general solution of the equation dydx = y2 - x2yx + 1 is

  • y2 = (1 + x)log(1 + x) - c

  • y2 = 1 + xlogc1 - x - 1

  • y2 = 1 - xlogc1 - x - 1

  • y2 = 1 + xlogc1 + x - 1


208.

The general solution of the differential equation dydx + sinx + y2 = sinx - y2 is

  • logetany2 = - 2sinx2 +C

  • logetany4 = 2sinx2 +C

  • logetany2 = - 2sinx2 +C

  • logetany4 = - 2sinx2 +C


Advertisement
209.

The function y specified implicitly by the relation 0yetdt + 0xcostdt = 0 satisfies the differential equation

  • e2yd2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sin2x

  • ey2d2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sinx


210.

The solution of the differential equation dydx = 2ex - y + x2e- y is

  • ey = 2ex + x33 + C

  • e- y = 2ex + x- 33 + C

  • e- y = 2ex + x33 + C

  • ey = 2e- x + x33 + C


Advertisement