The differential equation of all parabolas whose axis is Y-axis,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

The degree and order of the differential equation 1 + dydx373 = 7d2ydx2 respectively are

  • 3 and 7

  • 3 and 2

  • 7 and 3

  • 2 and 3


202.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


203.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


204.

The solution of the differential equation

dydx = tanyx + yx is

  • cosyx = cx

  • sinyx = cx

  • cosyx = cy

  • sinyx = cy


Advertisement
Advertisement

205.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


A.

xd2ydx2 - dydx = 0

Axis of parabola= Y axis and vertex of parabola is (0, k). Equation of parabola isx - 02 = 4ay - k          x2 = 4ay - 4akOn differentiate both sides w.r.t, 'x', we get          2x = 4adydx            x = 2adydx    12a = 1xdydxOn differentiating both sides w.r.t 'x', we get                     ddx1x . dydx = ddx12a 1x . d2ydx2 + dydx- 1x2 = 0                   xd2ydx2 - dydx = 0


Advertisement
206.

The particular solution of the differential equation xdy + 2ydx = 0, when x = 2, y = 1 is

  • xy = 4

  • x2y = 4

  • xy2 = 4

  • x2y2 = 4


207.

The general solution of the equation dydx = y2 - x2yx + 1 is

  • y2 = (1 + x)log(1 + x) - c

  • y2 = 1 + xlogc1 - x - 1

  • y2 = 1 - xlogc1 - x - 1

  • y2 = 1 + xlogc1 + x - 1


208.

The general solution of the differential equation dydx + sinx + y2 = sinx - y2 is

  • logetany2 = - 2sinx2 +C

  • logetany4 = 2sinx2 +C

  • logetany2 = - 2sinx2 +C

  • logetany4 = - 2sinx2 +C


Advertisement
209.

The function y specified implicitly by the relation 0yetdt + 0xcostdt = 0 satisfies the differential equation

  • e2yd2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sin2x

  • ey2d2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sinx


210.

The solution of the differential equation dydx = 2ex - y + x2e- y is

  • ey = 2ex + x33 + C

  • e- y = 2ex + x- 33 + C

  • e- y = 2ex + x33 + C

  • ey = 2e- x + x33 + C


Advertisement