The general solution of the equation dydx = y2&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

The degree and order of the differential equation 1 + dydx373 = 7d2ydx2 respectively are

  • 3 and 7

  • 3 and 2

  • 7 and 3

  • 2 and 3


202.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


203.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


204.

The solution of the differential equation

dydx = tanyx + yx is

  • cosyx = cx

  • sinyx = cx

  • cosyx = cy

  • sinyx = cy


Advertisement
205.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


206.

The particular solution of the differential equation xdy + 2ydx = 0, when x = 2, y = 1 is

  • xy = 4

  • x2y = 4

  • xy2 = 4

  • x2y2 = 4


Advertisement

207.

The general solution of the equation dydx = y2 - x2yx + 1 is

  • y2 = (1 + x)log(1 + x) - c

  • y2 = 1 + xlogc1 - x - 1

  • y2 = 1 - xlogc1 - x - 1

  • y2 = 1 + xlogc1 + x - 1


D.

y2 = 1 + xlogc1 + x - 1

       dydx = y2 - x2yx + 1                             ...i ydydx = y2 - x2x + 1 ydydx - y22x + 1 = - x2x + 1     ...iiPut y2 = tBy differentiating both side w. r. t. 'x', we get 2ydydx = dtdx Eq. (ii) reduces to12dtdx - t2x + 1 = - x2x + 1This is linear differential equation withP = - 1x + 1 and Q = - xx + 1

 IF = ePdx         = e- 1x + 1dx        = e- logx + 1 = elog1x + 1        = 1x + 1Required solution will bet IF = QIFdx + logc     Here, logc is a constanty2 . 11 + x = - xx + 1 × 1x + 1dx + logc y21 + x = - x + 1 - 1x + 12dx + logc y21 + x = - 11 + xdx - 11 + x2dx + logc y21 + x = - log1 + x + 11 + x + logc y21 + x = logc1 + x - 11 + x        y2 = 1 + xlogc1 + x - 1


Advertisement
208.

The general solution of the differential equation dydx + sinx + y2 = sinx - y2 is

  • logetany2 = - 2sinx2 +C

  • logetany4 = 2sinx2 +C

  • logetany2 = - 2sinx2 +C

  • logetany4 = - 2sinx2 +C


Advertisement
209.

The function y specified implicitly by the relation 0yetdt + 0xcostdt = 0 satisfies the differential equation

  • e2yd2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sin2x

  • ey2d2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sinx


210.

The solution of the differential equation dydx = 2ex - y + x2e- y is

  • ey = 2ex + x33 + C

  • e- y = 2ex + x- 33 + C

  • e- y = 2ex + x33 + C

  • ey = 2e- x + x33 + C


Advertisement