Solution of 2ysinxdydx = 2sinxcosx - y2c

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

The solution of the differential equation x +2y3dydx = Y is

  • y3 + Cx = y

  • xy42 + xy = Cy

  • y3 + Cy = x

  • x + 2y3 = y + C


212.

The solution ofthe differential equation

dydx = ylogy - logx + 1x is

  • x = yecy

  • y = xecy

  • x = yecx

  • None of these


213.

The solution of the differential equationdydx + siny + x2 + siny - x2 = 0 is

  • logtany2 = C - 2sinx

  • logtany4 = C - 2sinx2

  • logtany2 + π4 = C - 2sinx

  • logtany2 + π4 = C - 2sinx2


214.

The solution of differential equation x2 + y2 - 2xydydx = 0 is

  • x2 + y2 = xC

  • x2 - y2 = xC

  • x2 + y2 = C

  • x2 - y2 = C


Advertisement
215.

The solution of differential equation dydx = x2logx + 1siny + ycosy is

  • ysiny = x2logx + C

  • y = x2 + logx + C

  • ysiny = x2 + C

  • None of these


Advertisement

216.

Solution of 2ysinxdydx = 2sinxcosx - y2cosx, x = π2, y = 1 is given by

  • y2 = sin(x)

  • y = sin2(x)

  • y2 = cos(x) + 1

  • None of these


A.

y2 = sin(x)

Given, 2ysinxdydx = 2sinxcosx - y2cosx, x = π2  2ydydx + y2cotx = 2cosxPut y2 = v  dvdx + vcotx = 2cosx       IF = ecotxdx = elogsinx = sinx Solution is,    v . sinx = sinx2cosxdx + C y2sinx = sin2x + Cwhen x = π2, y = 1Then C = 0    y2 = sinx


Advertisement
217.

Solution of x2dydx - xy = 1 +cosyx is

  • tany2x = C - 12x2

  • tanyx = C + 1x

  • cosyx = 1 + Cx

  • x2 = C + x2tanyx


218.

The solution of dydx = cosx2 - ycscx where y = 2, when x = π2 is

  • y = sinx + cscx

  • y = tanx2 + cotx2

  • y = 12secx2 + 2cosx2

  • None of the above


Advertisement
219.

The solution of the equation sin-1dydx = x + y is

  • tanx + y + secx + y = x + C

  • tanx + y - secx + y = x + C

  • tanx + y - secx + y + x + C = 0

  • None of the above


220.

The solution of differential equation

4xydydx = 31 +x21 + y21 +x2 is

  • log1 + y = logx + 2tanx + C

  • log1 + y2 = 3log1x + 6tan-1x + C

  • log1 + y2 = 3logx + 6tan-1x + C

  • None of the above


Advertisement