The solution of differential equation4xydydx = 31 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

The solution of the differential equation x +2y3dydx = Y is

  • y3 + Cx = y

  • xy42 + xy = Cy

  • y3 + Cy = x

  • x + 2y3 = y + C


212.

The solution ofthe differential equation

dydx = ylogy - logx + 1x is

  • x = yecy

  • y = xecy

  • x = yecx

  • None of these


213.

The solution of the differential equationdydx + siny + x2 + siny - x2 = 0 is

  • logtany2 = C - 2sinx

  • logtany4 = C - 2sinx2

  • logtany2 + π4 = C - 2sinx

  • logtany2 + π4 = C - 2sinx2


214.

The solution of differential equation x2 + y2 - 2xydydx = 0 is

  • x2 + y2 = xC

  • x2 - y2 = xC

  • x2 + y2 = C

  • x2 - y2 = C


Advertisement
215.

The solution of differential equation dydx = x2logx + 1siny + ycosy is

  • ysiny = x2logx + C

  • y = x2 + logx + C

  • ysiny = x2 + C

  • None of these


216.

Solution of 2ysinxdydx = 2sinxcosx - y2cosx, x = π2, y = 1 is given by

  • y2 = sin(x)

  • y = sin2(x)

  • y2 = cos(x) + 1

  • None of these


217.

Solution of x2dydx - xy = 1 +cosyx is

  • tany2x = C - 12x2

  • tanyx = C + 1x

  • cosyx = 1 + Cx

  • x2 = C + x2tanyx


218.

The solution of dydx = cosx2 - ycscx where y = 2, when x = π2 is

  • y = sinx + cscx

  • y = tanx2 + cotx2

  • y = 12secx2 + 2cosx2

  • None of the above


Advertisement
219.

The solution of the equation sin-1dydx = x + y is

  • tanx + y + secx + y = x + C

  • tanx + y - secx + y = x + C

  • tanx + y - secx + y + x + C = 0

  • None of the above


Advertisement

220.

The solution of differential equation

4xydydx = 31 +x21 + y21 +x2 is

  • log1 + y = logx + 2tanx + C

  • log1 + y2 = 3log1x + 6tan-1x + C

  • log1 + y2 = 3logx + 6tan-1x + C

  • None of the above


C.

log1 + y2 = 3logx + 6tan-1x + C

Given, 4xydydx = 31 +x21 + y21 +x2 4y dy1 + y2 = 31 +x21 +x2dx 4y dy1 + y2 = 3x + 61 + x2On integrating both sides, we getlog1 + y2 = 3logx + 6tan-1x + C


Advertisement
Advertisement