The solution of the differential equation dydx = e

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

The solution of the differential equation dydx = y tanx - 2 sinx, is

  • y sinx = c + sin2x

  • y cosx = c + 12sin2x

  • y cosx = c - sin2x

  • y cosx = c + 12cos2x


232.

The differential equation of system of concentric circles with centre (1, 2) is :

  • x - 2 + y - 1dydx = 0

  • x - 1 + y - 2dydx = 0

  • x + 1dydx + y - 2 = 0

  • x + 2dydx + y - 1 = 0


233.

The solution of the differential equation dydx + 2yx1 +x2 = 11 +x22 is :

  • y(1 + x2) = c + tan-1(x)

  • ylog1 + x2 = c + tan-1x

  • y1 + x2 = c + tan-1x

  • y1 + x2 = c + sin-1x


234.

The solution of the differential equation xdy - ydx = x2 + y2dx is :

  • x+  x2 + y2 = cx2

  • y-  x2 + y2 = cx

  • x -  x2 + y2 = cx

  • y+  x2 + y2 = cx2


Advertisement
Advertisement

235.

The solution of the differential equation dydx = ex - y + x2e- y is :

  • y = ex - y + x2e- y + c

  • ey - ex = 13x3 + c

  • ey + ex = 13x3 + c

  • ex - ey = 13x3 + c


B.

ey - ex = 13x3 + c

Given that, dydx = ex - y + x2e- y dydx e- yex + x2 eydy = exdx + x2dx ey = ex + 13x3 + c ey - ex = 13x3 + c


Advertisement
236.

The integrating factor of the differential equation dydx + 1xy = 3x is :

  • x

  • in x

  • 0


237.

The solution of the differential equation sec2(x)tan(y))dx + sec2(y)tan(x))dy = 0 is :

  • tanytanx = c

  • tanytanx = c

  • tan2x tany= c

  • None of these


238.

The differential equation of all straight lines passing through origin is :

  • y = xdydx

  • dydx = y + x

  • dydx = y - x

  • None of these


Advertisement
239.

To reduce the differential equation dydx = Py = Qx . yn to the linear form, the substitution is :

  • v = 1yn

  • v = 1yn - 1

  • v = yn

  • v = yn - 1


240.

Integrating factor of the differential equation dydx +Pxy = Qx is :

  • P dx

  • Q dx

  • eP dx

  • eQ dx


Advertisement