The solution of differential equation xdydx + 2y&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

261.

The general solution of the differential equation 1 - x2y2 . dx = y . dx + x . dy is

  • sinxy = x +C

  • sin-1xy + x = C

  • sinx +C = xy

  • sinxy + x = C


262.

If m and n are order and degree of the differential equation y''5 + y''3y''' + y''' = sinx, then

  • m = 3, n = 5

  • m = 3, n = 1

  • m = 3, n = 3

  • m = 3, n = 2


263.

The order and degree of the differential equation y = xdydx + 2dydx is

  • 1, 2

  • 1, 3

  • 2, 1

  • 1, 1


264.

The general solution of the differential equation dydx + yx = 3x is

  • y = x - Cx

  • y = x + Cx

  • y = x2 - Cx

  • y = x2 + Cx


Advertisement
265.

The order of differential equation of all circles of given radius 'a' is

  • 1

  • 4

  • 3

  • 2


Advertisement

266.

The solution of differential equation xdydx + 2y = x2 is

  • y = x4 + Cx2

  • y = x2 + C4x2

  • y = x4 + C4x2

  • y = x24 + C


C.

y = x4 + C4x2

We have, xdydx + 2y = x2 dydx + 2xy = xThe above equation is a lmear differential equation in y IF = e2xdx = e2logx = x2Hence, requrred solution will be   y . x2 = x . x2dx + C1 yx2 = x44 + C1 yx2 = x4 + 4C14    y = x4 + C4x2   4C1 = C


Advertisement
267.

The differential coefficient of log10(x) with respect to logx(10) is

  • 1

  • - log10x2

  • logx102

  • x2100


268.

The solution for the differential equation dydx + dxx = 0 is

  • 1y + 1x = C

  • logxlogy = C

  • xy = C

  • x + y = C


Advertisement
269.

The order and degree of the differential equation 1 + dydx2 + sindydx34 = d2ydx2

  • order = 2, degree = 3

  • order = 2, degree = 4

  • oreder = 2, degree = 34

  • order = 2, degree = not defined


270.

Integrating factor of xdydx - y = x4 - 3x is

  • x

  • log(x)

  • 1x

  • - x


Advertisement