Solution of the differential equation ydx - xdy = x2ydx from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

281.

The degree and order of the differential equation of the family of all parabolas whose axis is X-axis, are respectively

  • 2, 1

  • 1, 2

  • 3, 2

  • 2, 3


Advertisement

282.

Solution of the differential equation ydx - xdy = x2ydx

  • yex2 = cx2

  • ye- x2 = cx2

  • y2ex2 = cx2

  • y2e- x2 = cx2


C.

y2ex2 = cx2

Given differential equation isydx - xdy = x2ydx ydx - x2ydx = xdy  1 - x2xdx = 1ydy    1x - xdx = 1ydyOn integrating, we getlogx - x22 + logc = logy logcx - x22 = logy       y = c1xe- x2/2 y2ex2 = cx2


Advertisement
283.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0 is

  • x - 2 = e2tan-1y + c

  • 2xetan-1y = e2tan-1y + c

  • xetan-1y = tan-1y + c

  • xe2tan-1y = etan-1y + c


284.

Solution of the differential equation (x + y - 1)dx + (2x+ 2y - 3)dy = 0

  • y + x + log (x + y - 2) = c

  • y + 2x + log (x + y - 2) = c

  • 2y + x + log (x + y - 2) = c

  • 2y + 2x + log (x + y - 2) = c


Advertisement
285.

The differential equation for the family of curve x2 + y2 - 2ay = 0, where a is an arbitrary constant, is

  • 2(x2 - y2)y' = xy

  • 2(x2 + y2)y' = xy

  • (x2 - y2)y' = 2xy

  • (x2 + y2)y' = 2xy


286.

Solution of the differential equation cosxdydx + ysinx = 1 is

  • ysecx + tanx = c

  • ysecx = tanx + c

  • ytanx = secx + c

  • ytanx = secxtanx + c


287.

The solution of the differential equation ydx + (x + x2y)dy = 0 is

  • - 1xy = c

  • - 1xy + logy = c

  • 1xy = logy + c

  • logy = cx


288.

The differential equation of the equation y2 = m(x2 - a2) is

  • ydydx = yd2ydx2 + dydx2x

  • ydydx = yd2ydx2 - dydx2x

  • yd2ydx2 = yd2ydx2 + dydx2x

  • None of the above


Advertisement
289.

dydx = ax +hby + k will be parabola, if

  • a = 0

  • b = 1

  • a = 1

  • None of these


290.

The number of real solutions of tan-1xx + 1 + sin-1x2 + x + 1 = π2 is

  • zero

  • one

  • two

  • infinite


Advertisement