Solution of the differential equation xdydx = y&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

301.

Solve dydx = y2xy - x2

  • y = cex/y

  • y = ce-y/x + x

  • y = cey/x

  • xy = cey/x


302.

Solve xcosxdydx + yxsinx + cosx = 1

  • y = xtanx + sinx +c

  • x = ytanx + c

  • yxsecx = tanx + c

  • xycosx = x +c


303.

Differential equation of the family of curve y = a cos(µx) + b sin(µx), where a, b are arbitrary constants, is given by

  • d2ydx2 + μy = 0

  • d2ydx2 + μ2y = 0

  • d2ydx2 - μ2y = 0

  • None of these


304.

The differential equation of all circles which pass through the origin and whose centres lie on y-axis is

  • x2 - y2dydx - 2xy = 0

  • x2 - y2dydx + 2xy = 0

  • x2 - y2dydx - xy = 0

  • x2 - y2dydx + xy = 0


Advertisement
305.

The differential equation of the family of curve y = Ae3x + Be5x, where A, B are arbitrary constants, is

  • d2ydx2 + 8dydx + 15 = 0

  • d2ydx2 - 8dydx + 15 = 0

  • d2ydx2 - dydx + y = 0

  • None of these


Advertisement

306.

Solution of the differential equation xdydx = y + x2 + y2 is

  • y - x2 + y2 = cx2

  • y + x2 + y2 = cx2

  • x + x2 + y2 = cy2

  • x - x2 + y2 = cy2


B.

y + x2 + y2 = cx2

 xdydx = y + x2 + y2 dydx = yx + 1 + y2x2v +xdvdx = v + 1 + v2Put       y = vx        dydx = v + xdvdxy + x2 + y2 = cx2


Advertisement
307.

The differential equation whose solution represents the family y = ae3x + bex is given by

  • d2ydx2 - 4dydx - 3y = 0

  • d2ydx2 + 4dydx - 3y = 0

  • d2ydx2 - 4dydx + 3y = 0

  • None of the above


308.

Solve 2dydx = yx + yx2

  • y = x + Cxy

  • y = x - Cxy

  • y = x + Cyx

  • y = x + Cy


Advertisement
309.

Solve x +2y3dydx = y, y >0

  • y = x3 + Cy

  • x = y3 + Cy

  • y = x3 - Cy

  • x = y3 - Cy


310.

The solution of the differential equation xdydx = y + xtanyx is

  • sinxy = x + C

  • sinyx = Cx

  • sinxy = Cy

  • sinyx = Cy


Advertisement