The solution of x2 + y2dx = 2x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

Soution of dydx = xlogx2 + xsiny + ycosy is

  • ysiny = x2logx + C

  • ysiny = x2 + C

  • ysiny = x2 + logx

  • ysiny = xlogx + C


342.

The general solution of y2dx + x2 - xy + y2dy = 0 is :

  • tan-1yx = logy + C

  • 2tan-1xy + logx + C = 0

  • logy + x2 + y2 + logy + C = 0

  • sinh-1xy + logy + C = 0


343.

Integrating factor of (x + 2y3)dydx = y2 is

  • e1y

  • e- 1y

  • y

  • - 1y


344.

y = Aex + Be2x + Ce3x satisfies the differential equation

  • y''' - 6y'' + 11y' - 6y = 0

  • y''' + 6y'' + 11y' + 6y = 0

  • y''' + 6y'' - 11y' + 6y = 0

  • y''' - 6y'' - 11y' + 6y = 0


Advertisement
345.

Observe the following statements

A. Integrating factor of dydx + y = x2 is ex

R. Integrating factor of dydx + Pxy = Qx is ePxdx

  • A is true, R is false

  • A is false, R is true

  • A is true, R is true, R  A

  • Both are false


346.

If dx + dy = (x + y)dx - dy, then logx + y = ?

  • x + y + c

  • x + 2y + c

  • x - y + c

  • 2x + y + c


347.

If x2y - x3dydx = y4cosx, then x3y- 3 is equal to

  • sin(x)

  • 2sin(x) + c

  • - 3sin(x) + c

  • 3cos(x) + c


348.

Observe the following statements

I. If dy +2xydx = 2e- x2dx, then yex2 = 2x + c,II. If ye- x2 - 2x = c, thendx = 2e- x2 - 2xydywhich of the following is correct statement

  • Both I and II are true

  • Neither I nor II is true

  • I is false, But II is true

  • I is true, But II is false


Advertisement
349.

If dydx = y +xtanyxx, then sinyx is equal to

  • cx2

  • cx

  • cx3

  • cx4


Advertisement

350.

The solution of x2 + y2dx = 2xydy is :

  • cx2 - y2 = x

  • cx2 + y2 = x

  • cx2 - y2 = y

  • cx2 + y2 = y


C.

cx2 - y2 = y

 x2 + y22xy = dydxPut  y = vx and dydx = v + xdvdx v + xdvdx = x2 + v2x22x2v v + xdvdx = 1 + v22v          xdvdx = 1 + v2 - 2v22v 2v1 - v2dv = 1xdx     - log1 - v2 = logx + logc - logx2 - y2x2 = logx + logc     - logx =  logc + logx2 - y2 cx2 - y2 = x


Advertisement
Advertisement