∫0π2sin2x . logtanxdx
0
2
4
7
If ∆x = 1cosx1 - cosx1 + sinxcosx1 + sinx + cosxsinxsinx1, then ∫0π4∆xdx is equal to
14
12
- 14
∫02πsinx + sinxdx is equal to
8
1
The value of ∫02x2dx, where [.] is the greatest integer function, is
2 - 2
2 + 2
2 - 1
If l (m,n) = ∫01tm1 + tndt, then the expression for l (m, n) in terms of l (m + 1, n + 1) is
2nm + 1 - nm + 1 . l m + 1, n - 1
nm + 1 . l m + 1, n - 1
2nm + 1 + nm + 1 . l m + 1, n - 1
mn + 1 . l m + 1, n - 1
∫1 + x - x- 1ex + x- 1dx is equal to
x + 1ex + x- 1 + C
x - 1ex + x- 1 + C
xex + x- 1 + C
xex + x- 1 x + C
If f(x) = x - [x], for every real number x, where [x] is the integral part of x. Then ∫- 11f(x)dx is equal to
The value of integral
∫- 11x + 1x - 12 + x + 1x - 12 - 212dx is
log43
4log34
4log43
log34
∫dxsinx - cosx + 2 equals to
- 12tanx2 + π8 + C
12tanx2 + π8 + C
12cotx2 + π8 + C
- 12cotx2 + π8 + C
The value of I = ∫01xx - 12dx
13
18
None of these