∫01x21 + x2dx is equal to
π4 - 1
1 - π2
π2 - 1
1 - π4
Minimize : z = 3x + y, subject to 2x + 3y ≤ 6, x + y ≥ 1, x ≥ 0, y ≥ 0
x = 1, y = 1
x = 0, y = 1
x = 1, y = 0
x = - 1, y = - 1
∫dxxx7 + 1 is equal to
logx7x7 + 1
17logx7x7 + 1 + c
logx7 + 1x7 + c
17logx7 + 1x7
Using Trapezoidal rule and following table ∫08fxdx is equal to
184
92
46
- 36
∫dxx + x is equal to
12log1 + x + c
2log1 + x + c
14log1 + x + c
3log1 + x + c
The value of ∫x21 + x6dx is
x3 + c
13tan-1x3 + c
log(1 + x3) + c
None of these
∫1 - cosxcsc2xdx is equal to
tanx2 + c
- cotx2 + c
2tanx2 + c
- 2cotx2 + c
∫cosx1 + sinxdx is equal to
sinx2 - cosx2
sinx2 + cosx2
2sinx2 - cosx2 + c
2sinx2 + cosx2 + c
∫13coslogxxdx is equal to
1
coslog3
sinlog3
π4
∫0π2sinx + cosx1 + sin2xdx is equal to
- π2
π2
π