If f(x) = ∫- 1xtdt, then for any x ≥ 0, f(x) is equal to
121 - x2
1 - x2
121 + x2
1 + x2
Let I = ∫0100π1 - cos2xdx, then
I = 0
I = 2002
I = π2
I = 100
Let f be a non-constant continuous function for all x > 0. Let f satisfy the relation f(ax) f(a-x)=1 for some a ∈ R*. Then, I = ∫0adx1 + f(x) is equal to
a
a4
a2
f(a)
∫logx3xdx is equal to
13logx2 + C
23logx2 + C
∫2xf'(x) + f(x)log2dx
2xf'(x) + C
2xlog(2) + C
2xf(x) + C
2x + C
∫01log1x - 1dx
1
0
2
None of the above
If [x] denotes the greatest integer less than or equal to x, then the value of the integral ∫02x2xdx equals
53
73
83
43
If ϕt = 1, for 0 ≤ t < 10, otherwise, then
∫- 30003000∑r' = 20142016ϕt - r'ϕt - 2016dt is
a real number
does not exist
The value of limx→2∫2x3t2x - 2dt is
10
12
18
16
Let f(x) denotes the fractional part of a real number x. Then, the value of ∫03f(x2)dx
23 - 2 - 1
2 - 3 + 1
3 - 2 + 1