The value of limx→0∫0x2cost2dxxsinx from Mathemati

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

The value of x - 2x - 22 x + 371/3dx

  • 320x - 2x +34/3 + C

  • 320x - 2x +33/4 + C

  • 512x - 2x +34/3 + C

  • 320x - 2x +35/3 + C


52.

If f(x) = 2x2 + 1, x  14x3 - 1, x > 1, then 02f(x)dx is

  • 47/3

  • 50/3

  • 1/3

  • 47/2


53.

If I = 02ex4x - αdx = 0, then α lies in the interval

  • (0, 2)

  • (- 1, 0)

  • (2, 3)

  • (- 2, - 1)


Advertisement

54.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


A.

1

limx00x2cost2dxxsinx                 00 form= limx0cosx4 × 2xsinx + xcosx     L' Hospital's rule= limx0 2cosx4 - x sinx4 × 4x3cosx + cosx - xsinx= 2cos0 - 0cos0 + cos0 - 0= 21 + 1= 1


Advertisement
Advertisement
55.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


56.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


57.

The value of the integral

- 11x2013exx2 +cosx + 1exdx is equal to

  • 0

  • 1 - e- 1

  • 2e- 1

  • 21 - e- 1


58.

The value of I = 0π/4tann + 1xdx + 120π/2tann + 1x2dx is

  • 1n

  • n + 22n + 1

  • 2n - 1n

  • 2n - 33n - 2


Advertisement
59.

The value of the integral

12exlogex + x + 1xdx

  • e21 + loge2

  • e2 - e

  • e21 + loge2 - e

  • e2 - e1 + loge2


60.

If [a] denote the greatest integer which is less than or equal to a. Then, the value of the integral - π2π2sinxcosxdx is

  • π2

  • π

  • - π

  • - π2


Advertisement