The value of I = ∫0π/4tann + 1xdx +&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

The value of x - 2x - 22 x + 371/3dx

  • 320x - 2x +34/3 + C

  • 320x - 2x +33/4 + C

  • 512x - 2x +34/3 + C

  • 320x - 2x +35/3 + C


52.

If f(x) = 2x2 + 1, x  14x3 - 1, x > 1, then 02f(x)dx is

  • 47/3

  • 50/3

  • 1/3

  • 47/2


53.

If I = 02ex4x - αdx = 0, then α lies in the interval

  • (0, 2)

  • (- 1, 0)

  • (2, 3)

  • (- 2, - 1)


54.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


Advertisement
55.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


56.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


57.

The value of the integral

- 11x2013exx2 +cosx + 1exdx is equal to

  • 0

  • 1 - e- 1

  • 2e- 1

  • 21 - e- 1


Advertisement

58.

The value of I = 0π/4tann + 1xdx + 120π/2tann + 1x2dx is

  • 1n

  • n + 22n + 1

  • 2n - 1n

  • 2n - 33n - 2


A.

1n

Given,

I = 0π/4tann + 1xdx + 120π/2tann - 1x2dxIn second integral, put t = x2 dx = 2dt

 Also, when x = 0 then t = 0,When x = π2 then t = π4Then, I = 0π4tann + 1xdx + 0π/4tann- 1tdt           I = 0π4tann + 1xdx +0π4tann- 1xdx                                        abf(x)dx = 0π4f(y)dy      I = 0π4tann + 1x + tann - 1xdx      I = 0π4tann - 1x . tan2x + 1dx      I= 0π4tann - 1 × sec2xdxPut     t = tanx    dt = sec2xdxAlso, when x = 0, then t = 0when x = π4, then t = 1

I = 01tn - 1dt = tnn01 = 1n


Advertisement
Advertisement
59.

The value of the integral

12exlogex + x + 1xdx

  • e21 + loge2

  • e2 - e

  • e21 + loge2 - e

  • e2 - e1 + loge2


60.

If [a] denote the greatest integer which is less than or equal to a. Then, the value of the integral - π2π2sinxcosxdx is

  • π2

  • π

  • - π

  • - π2


Advertisement