The value of ∫x - 2x - 22 x + 371/3dx
320x - 2x + 34/3 + C
320x - 2x + 33/4 + C
512x - 2x + 34/3 + C
320x - 2x + 35/3 + C
If f(x) = 2x2 + 1, x ≤ 14x3 - 1, x > 1, then ∫02f(x)dx is
47/3
50/3
1/3
47/2
If I = ∫02ex4x - αdx = 0, then α lies in the interval
(0, 2)
(- 1, 0)
(2, 3)
(- 2, - 1)
The value of limx→0∫0x2cost2dxxsinx
1
- 1
2
loge2
Let f(x) = maxx + x, x - x, where [x] denotes the greatest integer ≤ x. Then, the values of ∫- 33f(x)dx is
0
51/2
21/2
Suppose M = ∫0π/2cosxx + 2dx, N = ∫0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals
3π + 2
2π - 4
4π - 2
2π + 4
The value of the integral
∫- 11x2013exx2 + cosx + 1exdx is equal to
1 - e- 1
2e- 1
21 - e- 1
The value of I = ∫0π/4tann + 1xdx + 12∫0π/2tann + 1x2dx is
1n
n + 22n + 1
2n - 1n
2n - 33n - 2
A.
Given,
I = ∫0π/4tann + 1xdx + 12∫0π/2tann - 1x2dxIn second integral, put t = x2⇒ dx = 2dt
⇒ Also, when x = 0 then t = 0,When x = π2 then t = π4Then, I = ∫0π4tann + 1xdx + ∫0π/4tann- 1tdt I = ∫0π4tann + 1xdx + ∫0π4tann- 1xdx ∵ ∫abf(x)dx = ∫0π4f(y)dy⇒ I = ∫0π4tann + 1x + tann - 1xdx⇒ I = ∫0π4tann - 1x . tan2x + 1dx⇒ I = ∫0π4tann - 1 × sec2xdxPut t = tanx⇒ dt = sec2xdxAlso, when x = 0, then t = 0when x = π4, then t = 1
I = ∫01tn - 1dt = tnn01 = 1n
∫12exlogex + x + 1xdx
e21 + loge2
e2 - e
e21 + loge2 - e
e2 - e1 + loge2
If [a] denote the greatest integer which is less than or equal to a. Then, the value of the integral ∫- π2π2sinxcosxdx is
π2
π
- π
- π2