∫π16πsinxdx is equal to from Mathematics Integral

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The value of - 22xcosx + sinx + 1dx

  • 2

  • 0

  • - 2

  • 4


Advertisement

72.

π16πsinxdx is equal to

  • 0

  • 32

  • 30

  • 28


C.

30

Since the period of sinx is π.

 I = π16πsinxdx= 150πsinxdx = 15- cosx0π= 15- cosπ + cos0 = 151 + 1= 30


Advertisement
73.

cos2xcosxdx is equal to

  • 2sinx + logsecx +tanx + C

  • 2sinx - logsecx -tanx + C

  • 2sinx - logsecx +tanx + C

  • 2sinx + logsecx -tanx + C


74.

sin8x - cos8x1 - 2sin2xcos2xdx

  • - 12sin2x + C

  • 12sin2x + C

  • 12sinx + C

  • - 12sinx + C


Advertisement
75.

The value of 0πsin50xcos49xdx is

  • 0

  • π4

  • π2

  • 1


76.

2xf'(x) + f(x)log2dx is

  • 2xf'(x) + C

  • 2xf(x) + C

  • 2x(log(2))f(x) + C

  • log(2)f(x) + C


 Multiple Choice QuestionsShort Answer Type

77.

Evaluate the following integral

- 12xsinπxdx


 Multiple Choice QuestionsMultiple Choice Questions

78.

logx3xdx is equal to

  • 13logx2 + c

  • 23logx2 + c

  • 23logx2 + c

  • 13logx2 + c


Advertisement
79.

ex2x - 2x2dx

  • exx + c

  • ex2x2 + c

  • 2exx + c

  • 2exx2 + c


80.

The value of the integral dxex + e- x2

  • 12e2x +1 + c

  • 12e- 2x +1 + c

  • - 12e2x +1- 1 + c

  • 14e2x -1 + c


Advertisement