The value of ∫- 22xcosx + sinx + 1dx
2
0
- 2
4
∫π16πsinxdx is equal to
32
30
28
C.
Since the period of sinx is π.
∴ I = ∫π16πsinxdx= 15∫0πsinxdx = 15- cosx0π= 15- cosπ + cos0 = 151 + 1= 30
∫cos2xcosxdx is equal to
2sinx + logsecx + tanx + C
2sinx - logsecx - tanx + C
2sinx - logsecx + tanx + C
2sinx + logsecx - tanx + C
∫sin8x - cos8x1 - 2sin2xcos2xdx
- 12sin2x + C
12sin2x + C
12sinx + C
- 12sinx + C
The value of ∫0πsin50xcos49xdx is
π4
π2
1
∫2xf'(x) + f(x)log2dx is
2xf'(x) + C
2xf(x) + C
2x(log(2))f(x) + C
log(2)f(x) + C
Evaluate the following integral
∫- 12xsinπxdx
∫logx3xdx is equal to
13logx2 + c
23logx2 + c
∫ex2x - 2x2dx
exx + c
ex2x2 + c
2exx + c
2exx2 + c
The value of the integral ∫dxex + e- x2
12e2x + 1 + c
12e- 2x + 1 + c
- 12e2x + 1- 1 + c
14e2x - 1 + c