The value of I = ∫- π2π2sinxdx is from

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

1 + cosxdx is equal to

  • 22cosx2 + c

  • 22sinx2 + c

  • 2cosx2 + c

  • 2sinx2 + c


82.

The value of integral 0π2sin5xdx is

  • 415

  • 85

  • 815

  • 45


83.

If ddx{f(x)} = g(x), then abf(x)g(x)dx is equal to

  • 12f2(b) - f2a

  • 12g2(b) - g2a

  • f(b) - f(a)

  • 12f(b2) - fa2


84.

If I1 = 03πfcos2xdx

and I2 = 0πfcos2xdx, then

  • I1 = I2

  • 3I1 = I2

  • I1 = 3I2

  • I1 = 5I2


Advertisement
Advertisement

85.

The value of I = - π2π2sinxdx is

  • 0

  • 2

  • - 2

  • - 2 < 1 < 2


B.

2

- π2π2sinxdx = 20π2sinxdxSince sinx is even function.= 21 = 2


Advertisement
86.

If I = 01dx1 +xπ2, then

  • loge2 < 1 < π4

  • loge2 > 1

  • I = π4

  • I = loge2


87.

01000ex - xdx is equal to

  • e1000 - 1e - 1

  • e1000 - 11000

  • e - 11000

  • 1000(e - 1)


88.

sin-1x1 - x2dx is equal to

  • logsin-1x + c

  • 12sin-1x2 + c

  • log1 - x2 + c

  • sincos-1x + c


Advertisement
89.

dxxx + 1 equals

  • logx + 1x + c

  • logxx + 1 + c

  • logx - 1x + c

  • logx - 1x + 1 + c


90.

The value of integral - 11x + 2x + 2dx is

  • 1

  • 2

  • 0

  • - 1


Advertisement