∫1 + cosxdx is equal to
22cosx2 + c
22sinx2 + c
2cosx2 + c
2sinx2 + c
The value of integral ∫0π2sin5xdx is
415
85
815
45
If ddx{f(x)} = g(x), then ∫abf(x)g(x)dx is equal to
12f2(b) - f2a
12g2(b) - g2a
f(b) - f(a)
12f(b2) - fa2
If I1 = ∫03πfcos2xdx
and I2 = ∫0πfcos2xdx, then
I1 = I2
3I1 = I2
I1 = 3I2
I1 = 5I2
The value of I = ∫- π2π2sinxdx is
0
2
- 2
- 2 < 1 < 2
If I = ∫01dx1 + xπ2, then
loge2 < 1 < π4
loge2 > 1
I = π4
I = loge2
∫01000ex - xdx is equal to
e1000 - 1e - 1
e1000 - 11000
e - 11000
1000(e - 1)
D.
Let I = ∫01000ex - xdxWe know that the period of x - [x] is 1.∴ I = 1000∫01exdx= 1000ex01 = 1000(e - 1)
∫sin-1x1 - x2dx is equal to
logsin-1x + c
12sin-1x2 + c
log1 - x2 + c
sincos-1x + c
∫dxxx + 1 equals
logx + 1x + c
logxx + 1 + c
logx - 1x + c
logx - 1x + 1 + c
The value of integral ∫- 11x + 2x + 2dx is
1
- 1