The value of ∫0πcosxdx is
2π
2
π
B.
∫0πcosxdx= ∫0π2cosxdx - ∫π2πcosxdx= sinx0π2 - sinxπ2π= sinπ2 - sin0 - sinπ + sinπ2= 1 + 1= 2
The value of ∫- 33ax5 + bx3 + cx + kdx where a, b, c, k are constant, depends only on
a and k
a and b
a, b and c
k
The value of the integral ∫- aaxex21 + x2dx is
ea2
0
e- a2
a
Evaluate ∫x2x1 + x2dx
If ∫sinxsinx - adx = Ax + Blogsinx - α + c1, then the values of (A, B) is
sinα, cosα
cosα, sinα
- sinα, cosα
- cosα, sinα
The value of ∫- π2π2x3 + xcosx + tan5x + 1dx is equal to
None of these
The value of the integral ∫- π4π4sin- 4xdx is
- 83
32
83
∫x + 2x + 42exdx is equal to
exxx + 4 + C
exx + 2x + 4 + C
exx - 2x + 4 + C
ex2xexx + 4 + C
The value of ∫35x2x2 - 4dx
2 - loge157
2 + loge157
2 + 4loge3 - 4loge7 + 4loge5
2 - tan-157
∫0∞dxx + x2 + 13 is equal to
38
18
- 38