If for every integer n, ∫nn + 1fxdx = n2, then the value of ∫- 24f(x)dx is
16
14
19
None of these
The value of integral ∫0πxfsinxdx is
0
π∫0π2fsinxdx
π4∫0πfsinxdx
limx→∞∫02xxexdxe4x2 equals
∞
2
12
The value of ∫- 231 - x2dx, is
13
14/3
7/3
28/3
D.
We have,
1 - x2 = x2 - 1 = - x2 - 1, if - 1 < x < 1x2 - 1, otherwise∴ I = ∫- 231 - x2dx⇒ I = ∫- 21x2 - 1dx + ∫- 11- x2 - 1dx + ∫13x2 - 1dx⇒ I = x33 - x- 2- 1 - x33 - x- 11 - x33 - x13
⇒ I = - 1/3 + 1 - - 8/3 + 2 - 13 - 1 - - 1/3 + 1 + 273 - 3 - 1/3 - 1⇒ I = 43 + 4/3 + 203 = 283
∫1tanx + cotx + secx + cscxdx is equal to
12sinx + cosx + x + C
12sinx - cosx - x + C
12cosx - x + sinx + C
None of the above
If ∫0∞log1 + x21 + x2dx = k∫01log1 + x1 + x2dx, then k is equal to
4
8
π
2π
∫0xsintdt, where x ∈ 2nπ, 2n + 1π, n ∈ N, is equal to
4n - 1 - cos(x)
4n - sin(x)
4n - cos(x)
4n + 1 - cos(x)
Let I1 = ∫01exdx1 + x and I2 = ∫01x2dxex32 - x3 Then, I1I2 is equal to
13e
3e
e3
∫52525 - x23x4dx is equal to
π3
2π3
π6
5π6
∫dxcosx + 3sinx equals
12logtanx2 + π12 + C
13logtanx2 - π12 + C
logtanx2 + π6 + C
12logtanx2 - π6 + C