∫52525 - x23x4dx is equal to from Mathematics

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

If for every integer n, nn + 1fxdx = n2, then the value of - 24f(x)dx is

  • 16

  • 14

  • 19

  • None of these


112.

The value of integral 0πxfsinxdx is

  • 0

  • π0π2fsinxdx

  • π40πfsinxdx

  • None of these


113.

limx02xxexdxe4x2 equals

  • 0

  • 2

  • 12


114.

The value of - 231 - x2dx, is

  • 13

  • 14/3

  • 7/3

  • 28/3


Advertisement
115.

1tanx + cotx + secx + cscxdx is equal to

  • 12sinx + cosx + x  + C

  • 12sinx - cosx - x  + C

  • 12cosx - x + sinx  + C

  • None of the above


116.

If 0log1 + x21 + x2dx = k01log1 + x1 + x2dx, then k is equal to

  • 4

  • 8

  • π

  • 2π


117.

0xsintdt, where x  2, 2n + 1π, n  N, is equal to

  • 4n - 1 - cos(x)

  • 4n - sin(x)

  • 4n - cos(x)

  • 4n + 1 - cos(x)


118.

Let I101exdx1 + x and I201x2dxex32 - x3 Then, I1I2 is equal to

  • 13e

  • 3e

  • e3

  • 3e


Advertisement
Advertisement

119.

52525 - x23x4dx is equal to

  • π3

  • 2π3

  • π6

  • 5π6


A.

π3

I = 525 25 - x23x4dxLet x = 5sinθ  dx = 5cosθ I = π6π2 25 - 25sin2θ3x4sin4θ . 5cosθ

        = π6π253cos3θ . 5cosθ54sin4θ        = π6π2cot2θcsc2θ - 1       = π6π2cot2θcsc2θ - π6π2cot2θ       = π6π2cot2θcsc2θ - π6π2csc2θ - 1       = - cot3θ3 + cotθ + θπ6π2      = - 0 + 0 +π2 - - 333 + 3 + π6 = π3


Advertisement
120.

dxcosx + 3sinx equals

  • 12logtanx2 + π12 + C

  • 13logtanx2 - π12 + C

  • logtanx2 + π6 + C

  • 12logtanx2 - π6 + C


Advertisement