∫cos2tan-11 - x1 + xdx is equal to
18x2 - 1 + C
x24 + C
x2 + C
x22 + C
∫π6π31tan3xdx is
π12
π4
π3
π6
∫- 1117x5 - x4 + 29x3 - 31x + 1x2 + 1dx is
4/5
5/4
4/3
3/4
If In = ∫0π4tannxdx, then 1I3 + I5 is
1/4
1/2
1/8
4
If ∫0π2sin6xdx = 5π32, then the value of ∫- ππsin6x + cos6xdx is
5π8
5π16
5π2
5π4
D.
Given that ∫0π2sin6xdx = 5π32Let I = ∫- ππsin6x + cos6xdx = 2∫0πsin6x + cos6xdx = 4∫0π2sin6x + cos6xdx = 4∫0π2sin6xdx + 4∫0π2cosπ2 - xdx = 8∫0π2sin6xdx = 8 × 5 . 3 . 16 . 4 . 2 × π2 = 5π4
∫secxcscx2cotx - secxcscxdx is equal to
logsecx + tanx + c
logsecx + cscx + c
12logsec2x + tan2x + c
logsec2x + csc2x + c
If ∫0a2a - xdx = μ and ∫0afxdx = λ, then ∫02afxdx equals
2λ - μ
λ + μ
μ - λ
λ - 2μ
∫tansin-1xdx is equal to
11 - x2 + c
- 1 - x2 + c
- x1 - x2 + c
x1 - x2 + c
∫sinx - cosx4sinx + cosxdx is equal to
sinx - cosx5 + c
sinx - cosx55 + c
sinx - cosx44 + c
sinx + cosx55 + c
∫esinθlogsinθ + csc2θcosθdθ is equal to
∫esinθlogsinθ + csc2θ + c
esinθlogsinθ + cscθ + c
esinθlogsinθ - cscθ
esinθlogsinθ - csc2θ