∫cosx - sinx1 + 2sinxcosxdx is equal to
- 1cosx - sinx + c
cosx + sinxcosx - sinx + c
- 1sinx + cosx
xsinx + cosx + c
∫1xlogexedx is equal to
loge1 - logex + c
logelogeex - 1 + c
logelogex - 1 + c
loge1 + logex + c
The value of ∫1e10logexdx is equal to
10loge10e
10e - 1loge10e
10eloge10e
B.
Let I = ∫1e10logexdxAgain, let I1 = ∫10logexdx⇒ I1 = x . 10logex - ∫x . 10logex . loge10xdx⇒ I1 = x . 10logex - ∫10logexloge10dx⇒ 1 + loge10I1 = x10logex⇒ I1 = x . 10logex1 + loge10∴ I = x . 10logex1 + loge101e = 10e - 11 + loge10 = 10e - 1loge10e
The value of ∫- 24x + 1dx is equal to
12
14
13
16
If ∫x + 22x2 + 6x + 5dx = P ∫4x + 62x2 + 6x + 5dx + 12∫dx2x2 + 6x + 5, then the values of P is
2
∫x + 1x + 27x + 3dx is equal to
x + 21010 - x + 288 + c
x + 1102 - x + 288 - x + 322+ c
x + 21010 + c
x + 122 + x + 288 + x + 322 + c
∫x2 + 1x + 1dx is equal to
x + 1727 - 2x + 1525 + 2x + 1323 + c
2x + 1727 - 2x + 1525 + 2x + 1323 + c
x + 1727 - 2x + 1525 + c
x + 172 + x + 152 + x + 132 + c
∫1 + xx + e- xdx is equal to
logx - e- x
logx + e- x
log1 + xex + c
1 + xex2 + c
∫logx + 1 + x21 + x2dx is equal to
logx + 1 + x22 + c
xlogx + 1 + x2 + c
12logx + 1 + x2 + c
x2logx + 1 + x2 + c
∫dx1 - e2x is equal to
loge- x + e- 2x - 1 + c
logex + e2x - 1 + c
- loge- x + e- 2x - 1 + c
- loge- 2x + e- 2x - 1 + c