∫cosx + xsinxx2 cosxdx is equal to
logsinx1 + cosx + c
logsinxx + cosx + c
log2sinxx + cosx + c
logxx + cosx + c
The integral ∫012sin-1x2xdx equals
∫0π6xdxtanx
∫0π62tanxdx
∫0π22xdxtanx
∫0π62xsinxdx
B.
z = ∫012sin-1x2xdxPut sin-1x2 = t⇒ x = 2sint⇒ dx = 2costdtAlso, x = 0 ⇒ t = 0 x = 1 ⇒ t = π6∴ I = ∫0π62t2sint . 2cost dt = ∫0π62ttantdt = ∫0π62xtanxdx
If ∫0af2a - xdx = m and ∫0afxdx = n, then ∫02afxdx is equal to
2m + n
m + 2n
m - n
m + n
∫- 100100fxdx is equal to
∫- 100100fx2dx
∫- 100100f- x2dx
∫- 100100f1xdx
∫- 100100f- xdx
∫- 11ex3 + e- x3ex - e- xdx is equal to
e22 - 2e
e2 - 2e
2(e2 - e)
0
∫dxx + 1x is equal to
tan-1x + C
2tan-1x + C
tan-1x32 + C
∫logxx2dx is equal to
logxx + 1x2 + C
- logxx + 2x + C
- logxx - 12x + C
- logxx - 1x + C
If ∫fxlogcosxdx = - loglogcosx + C, then f(x) is equal to
tanx
- sinx
- cosx
- tanx
∫xsin-1x1 - x2dx is equal to
x - sin-1x + C
x - 1 - x2sin-1x + C
x + sin-1x + C
x + 1 - x2sin-1x + C
∫4ex - 6e- x9ex - 4e- xdx is equal to
32x + 3536log9e2x - 4 + C
32x - 3536log9e2x - 4 + C
- 32x + 3536log9e2x - 4 + C
- 52x + 3536log9e2x - 4 + C