∫exxxlogx + 1dx is equal to
exx + C
xexlogx + C
exlogx + C
x(ex + logx) + C
∫1 + logx1 + x logx2dx is equal to
11 + xlogx + C
11 + logx + C
- 11 + xlogx + C
log11 + logx + C
∫1 - tan2xdx is equal to
tanx + C
secx + C
2x - secx + C
2x - tanx + C
The value of ∫06x - 3dx is equal to
6
0
12
9
D.
∫06x - 3dx = ∫03x - 3dx + ∫36x - 3dx= ∫033 - xdx + ∫36x - 3dx= 3x - x220 3+ x22 - 3x36= 9 - 92 + 362 - 18 - 92 - 9= 92 + 18 - 18 - - 92 = 92 + 92 = 9
If f(x) = ∫2xsinxcost3dt, then f'(x) is equal to
cossin3xcosx - 2cos8x3
sinsin3xsinx - 2sin8x3
coscos3xcosx - 2cosx3
cossin3x - cos8x3
∫010x1010 - x10 + x10dx is equal to
10
5
2
The value of ∫01xexdx is equal to
e - 22
2(e - 2)
2e - 1
2(e - 1)
∫1xlogxloglogxdx is equal to
loglogx + C
loglogxlogx + C
loglogloglogx + C
logloglogx + C
∫3x1 - 9xdx is equal to
log3sin-13x + C
13sin-13x + C
19sin-13x + C
The value of the integral ∫cosxsinx + cosxdx is equal to
x + logsinx + cosx + C
12x + logsinx + cosx + C
logsinx + cosx + C
x2 + logsinx + cosx + C