∫1 + xexsin2xexdx is equal to
- cotex + C
tanxex + C
tanex + C
- cotxex + C
∫xex1 + x2dx is equal to
- exx + 1 + C
exx + 1 + C
xexx + 1 + C
- xexx + 1 + C
B.
Let I = ∫xex1 + x2dx = ∫x + 1 - 1ex1 + x2dx = ∫ex1 + xdx - ∫ex1 + x2dx
Applying integration by parts in first integral, we get
I = 11 + xex - ∫- 11 + x2exdx - ∫ex1 + x2dx + C = ex1 + x + C
∫exsinx + 2cosxsinxdx is equal to
excosx + C
exsinx + C
exsin2x + C
∫1 + cosxdx is equal to
2sinx2 + C
12sinx2 + C
22sinx2 + C
∫x2 - 1xdx is equal to
x2 - 1 - sec-1x + C
x2 - 1 + tan-1x + C
x2 - 1 + sec-1x + C
x2 - 1 - tanx + C
∫5 + x2x4dx is equal to
1151 + 5x232 + C
- 1151 + 1x232 + C
- 1151 + 5x232
1151 + 1x232
The value of ∫01dxex + e is equal to
1elog1 + e2
log1 + e2
1elog1 + e
log21 + e
The value of the integral ∫1e1 + logx3xdx is equal to
14
12
34
e
The value of the integtral ∫01x31 + x8dx is equal to
π8
π4
π16
π6
The value of ∫24logttdt is
12log22
52log22
32log22
log22