∫1 + xexsin2xexdx is equal to
- cotex + C
tanxex + C
tanex + C
- cotxex + C
∫xex1 + x2dx is equal to
- exx + 1 + C
exx + 1 + C
xexx + 1 + C
- xexx + 1 + C
∫exsinx + 2cosxsinxdx is equal to
excosx + C
exsinx + C
exsin2x + C
∫1 + cosxdx is equal to
2sinx2 + C
12sinx2 + C
22sinx2 + C
∫x2 - 1xdx is equal to
x2 - 1 - sec-1x + C
x2 - 1 + tan-1x + C
x2 - 1 + sec-1x + C
x2 - 1 - tanx + C
∫5 + x2x4dx is equal to
1151 + 5x232 + C
- 1151 + 1x232 + C
- 1151 + 5x232
1151 + 1x232
C.
Let I = ∫5 + x2x4dx = ∫x5x2 + 1x4dx = ∫5x2 + 1x3dxPut 5x2 + 1 = t ⇒ - 2 × 5x3dx = dt⇒ 1x3dx = - 110∴ I = - 110∫tdt = - 110 . t3232 + C = - 115t32 + C = - 1155x2 + 132 + C
The value of ∫01dxex + e is equal to
1elog1 + e2
log1 + e2
1elog1 + e
log21 + e
The value of the integral ∫1e1 + logx3xdx is equal to
14
12
34
e
The value of the integtral ∫01x31 + x8dx is equal to
π8
π4
π16
π6
The value of ∫24logttdt is
12log22
52log22
32log22
log22