∫1 + xexcotxexdx is equal to from Mathematics

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

231.

1 + xexcotxexdx is equal to

  • logcosxex + C

  • logcotxex + C

  • logsecxe- x + C

  • logsecxex + C


D.

logsecxex + C

1 + xexcotxexdx

Put               xex = t xex + exdx = dt   x + 1exdx = dt

 I = dtcott      = tantdt      = logsect + CAgain, put t= xex I = logsecxex + C


Advertisement
232.

x51 + x3dx is equal to

  • 291 + x2x3 - 9 + C

  • 29x3 - 91 + x2 + C

  • 291 + x3 + C

  • 291 + x2x3 - 2 + C


233.

4ex2ex - 5e- xdx is equal to

  • 4logex - 5 + C

  • 14loge2x - 5 + C

  • log2e2x - 5e- x + C

  • log2e2x - 5 + C


234.

x + 1x2dx is equal to

  • x22 + 2x + logx + C

  • x22 + 2 + logx + C

  • x22 + x + logx + C

  • x22 + 2x + 2logx + C


Advertisement
235.

xn - 1x2n + a2dx is equal to

  • 1natan-1xna + C

  • nasin-1xna + C

  • nasin-1xna + C

  • nacot-1xna + C


236.

x + 12xx2 + 1dx is equal to

  • logxx2 + 1 + C

  • logx + C

  • logx + 2tan-1x + C

  • log11 + x2 + C


237.

1xlogx2dx is equal to

  • 12loglogx2 + C

  • loglogx2 + C

  • 2loglogx2 + C

  • 14loglogx2 + C


238.

011x2 + 16x2 + 25dx is equal to

  • 1514tan-114 - 15tan-115

  • 1914tan-114 - 15tan-115

  • 1414tan-114 - 15tan-115

  • 1915tan-114 - 14tan-115


Advertisement
239.

- 11x1 - x1 +xdx is equal to

  • 13

  • 23

  • 1

  • 0


240.

The value of - ππsin2x1 + 7xdx is

  • 7x

  • π

  • π2

  • 2π


Advertisement