∫1 + xexcotxexdx is equal to
logcosxex + C
logcotxex + C
logsecxe- x + C
logsecxex + C
∫x51 + x3dx is equal to
291 + x2x3 - 9 + C
29x3 - 91 + x2 + C
291 + x3 + C
291 + x2x3 - 2 + C
D.
Let I = ∫x51 + x3dx = ∫x3 . x21 + x3dxPut 1 + x3 = t2⇒ 3x2dx = 2tdt⇒ x2dx = 23tdtAlso, x3 = t2 - 1∴ I = 23∫t2 - 1tt dt = 23∫t2 - 1dt = 23t33 - t + C = 23tt23 - 1 + C⇒ I = 29tt2 - 3 + CPut t = 1 + x3
⇒ I = 291 + x2x3 - 2 + C
∫4ex2ex - 5e- xdx is equal to
4logex - 5 + C
14loge2x - 5 + C
log2e2x - 5e- x + C
log2e2x - 5 + C
∫x + 1x2dx is equal to
x22 + 2x + logx + C
x22 + 2 + logx + C
x22 + x + logx + C
x22 + 2x + 2logx + C
∫xn - 1x2n + a2dx is equal to
1natan-1xna + C
nasin-1xna + C
nacot-1xna + C
∫x + 12xx2 + 1dx is equal to
logxx2 + 1 + C
logx + C
logx + 2tan-1x + C
log11 + x2 + C
∫1xlogx2dx is equal to
12loglogx2 + C
loglogx2 + C
2loglogx2 + C
14loglogx2 + C
∫011x2 + 16x2 + 25dx is equal to
1514tan-114 - 15tan-115
1914tan-114 - 15tan-115
1414tan-114 - 15tan-115
1915tan-114 - 14tan-115
∫- 11x1 - x1 + xdx is equal to
13
23
1
0
The value of ∫- ππsin2x1 + 7xdx is
7x
π
π2
2π