∫0π22x3sinx2dx is equal to
121 + π4
121 - π4
12π2 - 1
121 - π2
B.
I = ∫0ππ22x3sinx2dx = ∫0π22x2 . xsinx2dxPut x2 = t⇒ 2xdx = dtAlso, when x = 0, then t = 0and when x = π2, then t = π4⇒ I = ∫0π4tIsintIIdt= t- cost0π4 - ∫0π4- cost1dt= - tcost0π4 + ∫0π4costdt= - tcost + sint0π4= - π4 . 12 + 12= 121 - π4
∫secxmtan3x + tanxdx is equal to
secm + 2x + C
tanm + 2x + C
secm + 2xm + 2 + C
tanm + 2xm + 2 + C
∫17sinx7 + 10dx is equal to
17cosx7 + 10 + C
- 17cosx7 + 10dx
- cosx7 + 10 + C
- 7cosx7 + 10 + C
∫x - ax - xx + adx is equal to
logx + ax + C
alogx + ax + C
alogxx + a + C
∫x4ex5cosex5dx is equal to
13sinex5 + C
14sinex5 + C
15sinex5 + C
sinex5 + C
∫1sinxcosxdx is equal to
logtanx + C
logsin2x + C
logsecx + C
logcosx + C
∫2x + sin2x1 + cos2xdx is equal to
x + logtanx + C
xlogtanx + C
xtanx + C
x + tanx + C
∫18sin2x + 1dx is equal to
sin-1tanx + C
13sin-1tanx + C
13tan-13tanx + C
tan-13tanx + C
∫0π2logcosxsinxdx is equal to
π2
π4
π
0
The value of ∫- 124x2xdx is equal to
17
16
15
14