∫0π22x3sinx2dx is equal to
121 + π4
121 - π4
12π2 - 1
121 - π2
∫secxmtan3x + tanxdx is equal to
secm + 2x + C
tanm + 2x + C
secm + 2xm + 2 + C
tanm + 2xm + 2 + C
∫17sinx7 + 10dx is equal to
17cosx7 + 10 + C
- 17cosx7 + 10dx
- cosx7 + 10 + C
- 7cosx7 + 10 + C
∫x - ax - xx + adx is equal to
logx + ax + C
alogx + ax + C
alogxx + a + C
∫x4ex5cosex5dx is equal to
13sinex5 + C
14sinex5 + C
15sinex5 + C
sinex5 + C
∫1sinxcosxdx is equal to
logtanx + C
logsin2x + C
logsecx + C
logcosx + C
∫2x + sin2x1 + cos2xdx is equal to
x + logtanx + C
xlogtanx + C
xtanx + C
x + tanx + C
∫18sin2x + 1dx is equal to
sin-1tanx + C
13sin-1tanx + C
13tan-13tanx + C
tan-13tanx + C
C.
Let I = ∫18sin2x + 1 = ∫sec2x8tan2x + sec2xdx ∵ dividing numerator and denominator by cos2(x) = ∫sec2x1 + 3tanx2dxLet t = 3tanx⇒ dtdx = 3sec2x⇒ dt3 = sec2xdx
∴ I = 13∫dt1 + t2 = 13tan-1t + C = 13tan-13tanx + C
∫0π2logcosxsinxdx is equal to
π2
π4
π
0
The value of ∫- 124x2xdx is equal to
17
16
15
14