∫e- logxdx is equal to :
e- log(x) + C
- xe- log(x) + C
elog(x) + C
logx + C
D.
∫e- logxdx= ∫elog1/xdx= ∫1xdx= logx + C
∫ax2a- x - axdx is equal to :
1logasin-1ax + c
1logatan-1ax + c
2a- x - ax + c
logax - 1 + c
If g(x) = fx - f- x2 defined over [- 3, 3], and f(x) = 2x2 - 4x + 1, then ∫- 33gxdx is equal to :
0
4
- 4
8
∫sinxsinx - adx is equal to :
xcosa - sinalogsinx - a + c
xsina + c
xsina + sinalogsinx - a + c
xcosa + sinalogsinx - a + c
∫f'xfxlogfxdx is equal to :
fxlogfx
f(x) . log(f(x)) + c
loglogfx + c
1loglogfx + c
∫ex2 + exex + 1dx is equal to :
log1 + ex2 + ex + c
log2 + ex1 + ex + c
1 + ex2 + ex + c
2 + ex1 + ex + c
If In = ∫0π4tannθdθ, then Iθ + I6 is equal to :
17
14
15
16
∫ex - e- xex + e- xlogcoshx is equal to :
logtanhx
2logex + e- x + c
2logex - e- x + c
loglogcoshx + c
∫- 1212cosxlog1 + x1 - xdx = k . log2, then k equals to
- 1
- 2
12
∫0π2cosθ4 - sin2θdθ is equal to :
π2
π6
π3
π5