Which of the following is true ?
∫01exdx = e
∫012xdx = log2
∫01xdx = 23
∫01xdx = 13
∫sinlogx + coslogxdx is equal to
xcoslogx + c
coslogx + c
xsinlogx + c
sinlogx + c
∫exx - 1x2dx is equal to
exx2 + c
- exx2 + c
exx + c
- exx + c
∫5101x - 1x - 2dx
log2732
log3227
log89
log34
∫xlogxdx is equal to
x242logx - 1 + c
x222logx - 1
x242logx + 1 + c
x222logx + 1
∫0π2sinx - cosx1 - sinx . cosxdx is equal to
0
π2
π4
π
If ∫01tan-1xdx = p, then the value of ∫01tan-11 - x1 + xdx is
π4 + p
π4 - p
1 + p
1 - p
If f(x) = x , g(x) = sin(x), then ∫fgxdx is equal to
sin(x) + c
- cos(x) + c
x22 + c
x sin(x) + c
The value of ∫0π2logcscxdx is
π2log2
πlog2
- π2log2
2πlog2
A.
Let I = ∫0π2logcscxdx = ∫0π2log1sinxdx = - ∫0π2logsinx = π2log2 ∵ logsinxsinx = - π2log2
∫etanxsec2x + sec3xsinxdx is equal to
secxetanx + c
tanxetanx + c
etanx + tanx + c
1 + tanxetanx + c