The value of ∫dxxxn + 1 is
1nlogxnxn + 1 + C
logxn + 1xn + C
1nlogxn + 1xn + C
logxnxn + 1 + C
The value of ∫coslogxdx is
12sinlogx + coslogx + C
x2sinlogx + coslogx + C
x2sinlogx - coslogx + C
12sinlogx - coslogx + C
The value of ∫ex1 + sinx1 + cosxdx is
12exsecx2 + C
exsecx2 + C
12extanx2 + C
extanx2 + C
The value of ∫13sinx - cosx + 3dx is
logtanx2 + 12tanx2 + 1 + C
12log2tanx2 + 1tanx2 + 1 + C
log2tanx2 + 1tanx2 + 1 + C
2log2tanx2 + 1tanx2 + 1 + C
The value of ∫sin2xsin4x + cos4xdx is
tan-1cot2x + C
tan-1cos2x + C
tan-1sin2x + C
tan-1tan2x + C
The value of ∫1 + secxdx is
sin-12sinx + C
2sin-12sinx/2 + C
2sin-12sinx + C
2sin-12x/2 + C
The value of ∫x2 + 1x4 + x2 + 1dx is
13tan-1x - 1/x3 + C
123logx - 1/x - 3x - 1/x + 3 + C
tan-1x + 1/x3 + C
tan-1x - 1/x3 + C
The value of ∫01x21 - x232dx is
132
π8
π16
π32
The value of ∫0∞x1 + xx2 + 1dx is
2π
π4
B.
Let I = ∫0∞x1 + xx2 + 1dxBy partial fraction,x1 + xx2 + 1 = A1 + x + Bx + Cx2 + 1⇒ x = Ax2 + 1 + 1 + xBx + C⇒ x = Ax2 + 1 + Bx + Bx2 + C + Cx⇒ x = A + Bx2 + B + Cx + A + COn comparing both sides, we getA + B = 0, B + C = 1, A + C = 0 ...iOn adding all these equations, we getA + B + C = 12 ...(ii)∴ A = 12 - 1 = - 12, C = 12 and B = 12∴ I = ∫0∞- 121 + x + 1x + 12x2 + 1dx = - 12∫0∞dx1 + x + 12∫0∞xx2 + 1dx + 12∫0∞dx1 + x2
= - 12log1 + x0∞ + 14logx2 + 10∞ + 12 × π2= - 12limx→∞log1 + x + 14limx→∞log1 + x2 + π4= limx→∞log1 + x2141 + x12 + π4= limx→∞logx1x2 + 114x1x + 112 + π4= log0 + 1140 + 112 + π4= log1 + π4 = 0 + π4 = π4
∫18 + 2x - x2dx is equal to
13sin-1x - 13 + c
sin-1x + 13 + c
13sin-1x + 13 + c
sin-1x - 13 + c