∫4ex - 252ex - 5dx = Ax + Blog2ex - 5 + c, then
A = 5 and B = 3
A = 5 and B = - 3
A = - 5 and B = 3
A = - 5 and B = - 3
∫- π2π2log2 - sinx2 + sinxdx is equal to
1
3
2
0
D.
We have, ∫- π2π2log2 - sinx2 + sinxdxLet fx = log2 - sinx2 + sinxThen, f- x = log2 - sin- x2 + sin- x = log2 + sinx2 - sinx = log2 - sinx2 + sinx- 1 = - log2 - sinx2 + sinx = - fxThen, f(x) is an odd function.∴ ∫- π2π2f(x)dx = 0 ∵ If f(x) is an odd function, then ∫- aaf(x)dx = 0
∫x2 + 2ax + tan-1xx2 + 1dx is equal to
loga . ax + tan-1x + c
x + tan-1xlogloga + c
ax + tan-1xloga + c
logax + tan-1x + c
If ∫fxlogsinxdx = loglogsinx + c, then f(x) is equal to
cot(x)
tan(x)
sec(x)
csc(x)
∫0π2secxnsecxn +cscxndx is equal to
π2
π3
π4
π6
∫01xtan-1xdx =
π4 + 12
π4 - 12
12 - π4
- π4 - 12
If ∫19 - 16x2dx = αsin-1βx + c, then α + 1β =
712
1912
912
If ∫0π2logcosxdx = π2log12, then ∫0π2logsecxdx =
π2log12
1 - π2log12
1 + π2log12
π2log2
∫1x2 + 4x2 + 9dx = Atan-1x2 + Btan-1x3 + C, then A - B =
16
130
- 130
- 16
If x - 5x - 7dx = Ax2 - 12x + 35 + logx - 6 + x2 - 12x + 35 + C, then A =
- 1
12
- 12