∫x + 2x2 + 3x + 3x + 1dx is equa to
23tan-1xx + 1 + C
23tan-1x3x + 1 + C
23tan-1xx + 12 + C
None of these
∫sin-1xa + xdx is equal to
tan-1xa + xa + C
atan-1xa - xa + C
atan-1xa . a + xa + C
atan-1xa . a + xa - xa + C
limn→∞1n1n + 1 + 2n + 2 + ... + 3n4n is equal to
log(4)
- log(4)
1 - log(4)
The value of the integral ∫0π2sin2xsinx + cosxdx is equal to
2log2
22 + 1
log2 + 1
None of the above
∫dx9 + 16sin2x is equal to
13tan-13tanx5 + c
15tan-1tanx15 + c
115tan-1tanx5 + c
115tan-15tanx3 + c
∫x2dxxsinx + cosx2 is equal to
sinx + cosxxsinx + cosx + c
xsinx - cosxxsinx + cosx + c
sinx - xcosxxsinx + cosx + c
D.
ddxxsinx + cosx = xcosx∴ I = ∫x2dxxsinx + cosx2 = ∫x . cosxxsinx + cosx2 . xcosxdx = ∫xcosx . xcosxxsinx + cosx2dxOn integrating by parts, = xcosx . - 1xsinx + cosx = - ∫cosx - x- sinxcos2x - - 1xsinx + cosx = - xcosxxsinx + cosx + ∫sec2xdx = - xcosxxsinx + cosx + tanx + c
Hence, option (d) None of these is correct.
If f(x) = Asinπx2 + B, f'12 = 2 and ∫01fxdx = 2Aπ, then A and B are
π2, π2
2π, 3π
0, - 4π
4π, 0
Let g(x) = ∫0xftdt, where f is such that 12 ≤ fx ≤ 1 for t ∈ [0, 1] and 0 ≤ ft ≤ 12 for t ∈ [1, 2]. Then, g(2) satisfies the inequality
- 32 ≤ g2 < 12
0 ≤ g2 < 2
12 ≤ g2 < 32
2 < g(2) < 4
∫dxsinx - cosx + 2 is equal to
- 12tanx2 + π8 + C
12tanx2 + π8 + C
12cotx2 + π8 + C
∫ex2sinx2 + π4dx is equal to
ex2cosx2 + C
2ex2cosx2 + C
ex2sinx2 + C
2ex2sinx2 + C