If f(x) = Asinπx2 + B, f'12 = 2&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

411.

x + 2x2 +3x +3x + 1dx is equa to

  • 23tan-1xx + 1 + C

  • 23tan-1x3x + 1 + C

  • 23tan-1xx + 12 + C

  • None of these


412.

sin-1xa + xdx is equal to

  • tan-1xa + xa + C

  • atan-1xa - xa + C

  • atan-1xa . a +xa + C

  • atan-1xa . a + xa - xa + C


413.

limn1n1n + 1 + 2n + 2 + ... + 3n4n is equal to

  • log(4)

  • - log(4)

  • 1 - log(4)

  • None of these


414.

The value of the integral 0π2sin2xsinx +cosxdx is equal to

  • 2log2

  • 22 + 1

  • log2 + 1

  • None of the above


Advertisement
415.

dx9 + 16sin2x is equal to

  • 13tan-13tanx5 + c

  • 15tan-1tanx15 + c

  • 115tan-1tanx5 + c

  • 115tan-15tanx3 + c


416.

x2dxxsinx + cosx2 is equal to

  • sinx + cosxxsinx + cosx + c

  • xsinx - cosxxsinx + cosx + c

  • sinx - xcosxxsinx + cosx + c

  • None of these


Advertisement

417.

If f(x) = Asinπx2 + B, f'12 = 2 and 01fxdx = 2Aπ, then A and B are

  • π2, π2

  • 2π, 3π

  • 0, - 4π

  • 4π, 0


D.

4π, 0

fx = Asinπx2 + B, f'12 = 2   f'x = 2cosπx2 f'12 = 2cosπ4 = 22 22 = 2         f'12 = 2       A = 4πNow, 01fxdx = 2Aπ 01Asinπx2 + B . dx = 2Aπ - 2Aπcosπx2 + B01 = 2Aπ                         B + 2Aπ = 2Aπ                                    B = 0Hence, option (d) 4π, 0 is correct.


Advertisement
418.

Let g(x) = 0xftdt, where f is such that 12  fx  1 for t [0, 1] and 0  ft  12 for t  [1, 2]. Then, g(2) satisfies the inequality

  • - 32  g2 < 12

  • 0  g2 < 2

  • 12  g2 < 32

  • 2 < g(2) < 4


Advertisement
419.

dxsinx - cosx + 2 is equal to

  • - 12tanx2 + π8 + C

  • 12tanx2 + π8 + C

  • 12cotx2 + π8 + C

  • 12cotx2 + π8 + C


420.

ex2sinx2 + π4dx is equal to

  • ex2cosx2 + C

  • 2ex2cosx2 + C

  • ex2sinx2 + C

  • 2ex2sinx2 + C


Advertisement