The solution of the differential equation xdy - ydx = x2 + y2dx is
y - x2 + y2 = Cx2
y + x2 + y2 = Cx2
y + x2 + y2 + Cx2 = 0
None of the above
If ∫0t2x fxdx = 25t5,t > 0, then f425 is
25
52
- 25
None of these
The value of interal I = ∫sinx + cosx1 + sin2xdx is
1 + cos2x
x
1 + 2x
The value of interal ∫- 3232sin3xcos3xdx is
0
1/2
1
∫xe - 1 + ex - 1xe + exdx is equal to
1elogxe - ex + c
1elogxe + ex + c
1elogex - xe + c
∫01dx1 + x + x is equal to
432 - 1
342 - 1
431 - 2
341 - 2
∫015x - 3dx is equal to
1013
3110
1310
∫0πxsin4xdx is equal to
3π16
3π216
16π3
16π23
B.
Let I = ∫0πxsin4xdx ...i = ∫0ππ - xsin4xdx ...ii 2I = π∫0πsin4xdx ∵ addin Eq. (i) and (ii) = 2π∫0π2sin4xdx = 2πΓ52Γ122Γ4 + 0 + 22 = 2π32 × 12 × π2 × 2 × 1 = 3π28⇒ I = 3π216
∫555x 55x 5x dx is equal to
555xlog53 + c
55xlog53 + c
The value of ∫24x - 2 + x - 3dx is
1 sq unit
2 sq unit
3 sq unit
5 sq unit