If b > a, then ∫abdxx - ab - x is equal to
π2
π
π2b - a
π4b - a
∫exx2 + 1x + 12dx is equal to
- exx + 1 + c
exx + 1 + c
exx - 1x + 1 + c
xexx + 1 + c
∫csc4xdx is equal to
cotx + cot3x3 + C
tanx + tan3x3 + C
- cotx - cot3x3 + C
- tanx - tan3x3 + C
∫01000ex - xdx is
e1000 - 1
e1000 - 1e - 1
1000(e - 1)
e - 11000
∫1 + x + x + x2x + 1 + xdx is equal to
121 + x + C
231 + x32 + C
1 + x + C
2(1 + x)3/2 + C
∫dxx2 + 4x + 13 is equal to
logx2 + 4x + 13 + c
13tan-1x + 23 + c
log2x + 4 + c
2x + 4x2 + 4x + 132 + c
The value of ∫23x + 1x2x - 1dx is
log169 + 16
log169 - 16
2log2 - 16
log43 - 16
∫0π4cosx - sinxdx + ∫π45π4sinx - cosxdx + ∫2ππ4cosx - sinxdx
is equal to
2 - 2
22 - 2
32 - 2
42 - 2
∫ax2a- x - axdx is equal to
1logasin-1ax + c
1logatan-1ax + c
2a- x - ax + c
logax - 1 + c
The value of ∫01x4 + 1x2 + 1dx is
163 - 4π
163π + 4
163 + 4π
163π - 4
D.
Let I = ∫01x4 + 1x2 + 1dx = ∫01x4 + 1 - 1 + 1x2 + 1dx = ∫01x4 + 1x2 + 1 + 2x2 + 1dx = ∫01x2 - 1 + 2x2 + 1dx = x33 - x + 2tan-1x01 = 13 - 1 + 2tan-11 - 0 = - 23 + 2 . π4 = 163π - 4